“How Our Ancient Brains Are Coping in the Age of Digital Distraction” [Discover Magazine]

“How Our Ancient Brains Are Coping in the Age of Digital Distraction

Our species invented the internet. Can we handle the consequences?

By Kenneth Miller

April 20, 2020 10:00 AM

https://www.discovermagazine.com/mind/how-our-ancient-brains-are-coping-in-the-age-of-digital-distraction

(…)

In the public arena, online filters generate bubbles that reinforce our preconceptions and amplify our anger. Brandishing tweets like pitchforks, we’re swept into virtual mobs; some of us move on to violence IRL. Our digitally enhanced tribalism upends political norms and sways elections.

(…)

A growing body of research suggests that this conundrum arises from a feature etched into our DNA: our unparalleled hunger to know stuff. “This is an ancient drive that leads to all sorts of complexities in how we interact with the world around us,” says Adam Gazzaley, a neuroscientist at the University of California, San Francisco, and co-author of The Distracted Mind: Ancient Brains in a High-Tech World.

(…)

Yet this wonder’s origins were strikingly humble. About 7 million years ago, hominins — our branch of the primate family tree — began the long transition to walking upright. Bipedalism, or walking on two legs, freed our hands for making and manipulating tools. It also allowed us to walk longer distances, key to our spread beyond Africa’s forests and savannas. “If you look at nonhuman primates, it’s like they have another set of hands down there,” notes Dean Falk, a professor of anthropology at Florida State University and senior scholar at Santa Fe’s School for Advanced Research, who specializes in brain evolution. “When our feet became weight-bearing instruments, that kicked everything off — no pun intended.”

Not that the effects were immediate. More than 3 million years ago, the braincase of Australopithecus afarensis, likely the first fully bipedal hominin, was only slightly larger than a chimpanzee’s. But by the time Homo sapiens emerged at least 300,000 years ago, brain volume had tripled. Our brain-to-body ratio is six times that of other mammals, and the neurons in our cerebral cortex (the brain’s outer layer, responsible for cognition) are more densely packed than those of any other creature on Earth.

In recent years, scientists have identified about two dozen genetic changes that might have helped make our brains not only bigger but incomparably capable. “It’s not just one quantum leap,” says University of Wisconsin-Madison paleoanthropologist John Hawks. “A lot of adaptations are at play, from metabolic regulation to neuron formation to timing of development.” A stretch of gene-regulating DNA called HARE5, for example, differs slightly between chimps and humans; when a team at Duke University introduced both versions into mouse embryos, the ones that got the human type developed brains that were 12 percent larger. Meanwhile, mutations in a gene called NOTCH2 increase our production of neural stem cells and delay their maturation into cortical neurons, which may be part of the reason our brains keep growing far longer than those of other primates. The FOXP2 gene, crucial for verbal communication in many species, diverges by two base pairs in humans and our nearest living ape relatives. Our mutation may explain why we can talk and chimps can’t.

Our brains were also shaped by external forces, which increased the odds of smarter hominins passing on their genes. Experts debate which factors mattered most. Falk, for one, hypothesizes that the loss of grasping feet was crucial: When infants could no longer cling to their mothers, as nonhuman primates do, the need to soothe them from a distance led to the development of language, which revolutionized our neural organization. Other researchers believe that dietary shifts, such as eating meat or cooking food in general, enabled us to get by with a shorter digestive tract, which freed up more energy for a calorie-hogging brain. Still others credit our cerebral evolution to growing social complexity or intensifying environmental challenges.

What’s clear is that our neural hardware took shape under conditions radically different from those it must contend with today. For millennia, we had to be on the alert for dangerous predators, hostile clans, potential sources of food and shelter — and that was about it. As McGill University neuroscientist Daniel J. Levitin put it in his book The Organized Mind: “Our brains evolved to focus on one thing at a time.”

Our digital devices, by design, make that almost impossible.

Tech vs. Brain

The part of the brain that enables us to make elaborate plans and carry them through — the part, arguably, that makes us most human — is the prefrontal cortex. This region is only slightly larger in H. sapiens than in chimps or gorillas, but its connections with other brain regions are more extensive and intricate. Despite this advanced network, our planning ability is far stronger than our ability to remain focused on a given task.

One reason is that, like all animals, we evolved to switch attention instantly when we sense danger: the snapping twig that might signal an approaching predator, the shadow that could indicate an enemy behind a tree. Our goal-directed, or top-down, mental activities stand little chance against these bottom-up forces of novelty and saliency — stimuli that are unexpected, sudden or dramatic, or that evoke memories of important experiences.

(…)

When the animal finds a ripe mango in the jungle — or solves a problem in the lab — brain cells in what’s called the dopaminergic system light up, creating a sensation of pleasure. These cells also build durable connections with the brain circuits that helped earn the reward. By triggering positive feelings whenever these circuits are activated, the system promotes learning.

Humans, of course, forage for data more voraciously than any other animal. And, like most foragers, we follow instinctive strategies for optimizing our search. Behavioral ecologists who study animals seeking nourishment have developed various models to predict their likely course of action. One of these, the marginal value theorem (MVT), applies to foragers in areas where food is found in patches, with resource-poor areas in between. The MVT can predict, for example, when a squirrel will quit gathering acorns in one tree and move on to the next, based on a formula assessing the costs and benefits of staying put — the number of nuts acquired per minute versus the time required for travel, and so on. Gazzaley sees the digital landscape as a similar environment, in which the patches are sources of information — a website, a smartphone, an email program. He believes an MVT-like formula may govern our online foraging: Each data patch provides diminishing returns over time as we use up information available there, or as we start to worry that better data might be available elsewhere.

The call of the next data patch may keep us hopping from Facebook to Twitter to Google to YouTube; it can also interfere with the fulfillment of goals — meeting a work deadline, paying attention in class, connecting face-to-face with a loved one. It does this, Gazzaley says, in two basic ways. One is distraction, which he defines as “pieces of goal-irrelevant information that we either encounter in our external surroundings or generate internally within our own minds.” We try to ignore our phone’s pings and buzzes (or our fear of missing out on the data they signify), only to find our focus undermined by the effort.

The other goal-killer is interruption: We take a break from top-down activity to feed our information munchies. The common term for this is multitasking, which sounds as if we’re accomplishing several things at once — working on the quarterly report, answering client emails, staying on top of the politician’s gaffe count, taking a peek at that aardvark. In truth, it means we’re doing nothing well.

(…)

It also wreaks havoc on working memory, the function that allows us to hold a few key bits of data in our heads just long enough to apply them to a task. Multiple studies have shown that “media multitasking” (the scientific term for toggling between digital data sources) overloads this mental compartment, making us less focused and more prone to mistakes. In 2012, for instance, Canadian researchers found that multitasking on a laptop hindered classroom learning not only for the user but for students sitting nearby. Heavy media multitasking has been associated with diminished cognitive control, higher levels of impulsivity and reduced volume in the anterior cingulate cortex, a brain region linked with error detection and emotional regulation.

Us vs. Them

Emotional regulation is central to another of tech’s disruptive effects on our ancient brains: exacerbation of tribal tendencies. Our distant ancestors lived in small nomadic bands, the basic social unit for most of human history. “Groups that were competing for resources and space didn’t always do so peacefully,” says paleoanthropologist Hawks. “We’re a product of that process.”

These days, many analysts see tribalism asserting itself in the resurgence of nationalist movements worldwide and the sharp rise in political polarization in the U.S., with both trends playing out prominently online. A study published in the American Journal of Political Science in 2015 found that party affiliation had become a basic component of identity for Republicans and Democrats. Social media, which spurs us to publicly declare our passions and convictions, helps fuel what the authors call “the gradual encroachment of party preference into nonpolitical and hitherto personal domains.”

And we’re hardwired to excel at telling “us” from “them.” When we interact with in-group members, a release of dopamine gives us a rush of pleasure, while out-group members may trigger a negative response. Getting online “likes” only intensifies the experience.

Our retreat into tribal mode may also be a reaction to the data explosion that the web has ignited. In 2018, in the journal Perspectives on Psychological Science, psychologist Thomas T. Hills reviewed an array of earlier studies on the proliferation of information. He found that the upsurge in digitally mediated extremism and polarization may be a response to cognitive overload. Amid the onslaught, he suggested, we rely on ingrained biases to decide which data deserve our attention (see “Tribal Tech” sidebar). The result: herd thinking, echo chambers and conspiracy theories. “Finding information that’s consistent with what I already believe makes me a better member of my in-group,” Hills says. “I can go to my allies and say, ‘Look, here’s the evidence that we’re right!’ ”

(…)

For example, when Red Sox and Yankees fans watch their rival team fail to score, even against a third team, they show heightened activity in the ventral striatum, a brain region associated with reward response.

It’s surely no coincidence that during the 2016 presidential election, Russian hackers focused largely on convincing various groups of Americans that another group was out to get them. But foreign agents are hardly the top promoters of tribalism online. As anyone who’s spent time on social media knows, there’s plenty of homegrown schadenfreude on the web.

(…)

Faced with tech’s cognitive overload, humans determine what’s worthy of attention by relying on biases shaped by evolution, says Thomas T. Hills, a professor of psychology at England’s University of Warwick. Those tendencies may have helped our ancestors survive, but they’re not always in our best interests today, Hills says. He identifies four types of “cognitive selection” that fuel digital tribalism.

Selection for belief-consistent information. Also called confirmation bias, it inclines us to prefer data that align with what we already think. In prehistoric times, this might have led people to see a rainstorm as proof of a shaman’s power over the weather — an interpretation that strengthened social cohesion, even if it was wrong. Today, confirmation bias can lead to more consequential errors, such as seeing a cold snap as proof that climate change is a hoax.

Selection for negative information. This tendency, also known as negativity bias, primed our ancestors’ brains to prioritize alertness for predators over other, less threatening types of attention. Today, it can lead us to privilege bad news over good — for example, by taking a single horrific crime by an out-group member more seriously than data showing that the group as a whole is law-abiding.

Selection for predictive information. Pattern-recognition bias, as it’s often called, helps us discern order in chaos. Noticing that large prey animals tended to arrive in the savanna after the first summer rains would have given early humans an evolutionary advantage. Today, however, a predilection for patterns can lead us to detect conspiracies where none exist.

Selection for social information. This “herd bias” prompts us, in uncertain environments, to follow the crowd. Back in the day, “if everyone else in your tribe was running toward the river, they probably had a good reason,” says Hills. But if everyone in your Reddit community says a famous politician is running a child-sex ring from the basement of a pizzeria, well, it would be wise to visit a fact-checking website before making up your mind.”

“Heightened disgust sensitivity is associated with greater fear of sin and fear of God” [PsyPost]

“Heightened disgust sensitivity is associated with greater fear of sin and fear of God

BY ERIC W. DOLAN  

MAY 14, 2020

PsyPost

https://www.psypost.org/2020/05/heightened-disgust-sensitivity-is-associated-with-greater-fear-of-sin-and-fear-of-god-56776

(…)

“This started my interest in politics. As an outsider, I was in a position to see and experience things differently, especially how individuals used religion to increase their personal wealth and power. I was also able to see religion, with its organization of humans and rules regarding correct behavior, as distinct from faith, which is personal and seen in one’s behavior. The questions became: ‘Why is this the case?’ and ‘how does it benefit group members enough to put their self-interest aside?’”

“Studying the adaptive qualities of emotional response, both predispositions and contextual influences, has long been my focus; disgust – which is connected with many discriminatory behaviors – is one of those key emotions for understanding human behavior,” Stewart explained.

Stewart and his colleagues examined the relationship between disgust sensitivity and the fear of God using a scientific survey and an experiment.

The survey assessed religious fear, disgust sensitivity, anger, and anxiety in 523 participants who were recruited from a large southern American university. The researchers found that sexual disgust and pathogen disgust were associated with fear of sin and fear of God, respectively.

In other words, people who reported being more disgusted by the thought of casual sex or hearing strangers having sex were more likely to agree with statements such as “I am afraid of having immoral thoughts.” People who reported being more disgusted by stepping in dog poop or seeing mold were more likely to agree with statements such as “I worry that God is upset with me.”

(…)

Stewart told PsyPost he hopes the findings highlight the importance of the concept of the human behavioral immune system (HBIS), which “refers to a variety of psychological processes that serve to protect us as individuals and society from real or perceived pathogens.”

(…)

“Chief amongst these is the emotion of disgust, which helps to prevent the contact with and ingestion of things that might make us ill. Importantly, the human behavioral immune system influences a variety of social and political behaviors, including – as demonstrated in our paper – religious behaviors.”

(…)

“Religion is behind some of most beneficial actions humans have engaged in to help their fellow human; it is also behind some truly horrific behaviors. Understanding the roots of these behaviors, and what might lead to both the ‘good’ and ‘bad’ of religion is important for those who want individuals to live their best lives.”

“Perhaps most important for right now, we live in a time where, as more people become sick with coronavirus, higher levels of disgust will likely be prevalent; understand the actions through the human behavioral immune system will be important in avoiding political predations such as those occurring in the wake of the Spanish flu in 1918 (e.g., the spread of fascism and communism – both authoritarian governing institutions),” Stewart said.”

***

Frontiers in Psychology

29 January 2020  

https://www.frontiersin.org/articles/10.3389/fpsyg.2020.00051/full

https://doi.org/10.3389/fpsyg.2020.00051

The Effect of Trait and State Disgust on Fear of God and Sin

Patrick A. Stewart [1], Thomas G. Adams Jr.[2] and Carl Senior [3]

[1] Department of Political Science, University of Arkansas, Fayetteville, AR, United States
[2] Department of Psychology, University of Kentucky, Lexington, KY, United States
[3] School of Life & Health Sciences, Aston University, Birmingham, United Kingdom

There is a growing literature suggesting disgust plays a major role in religiosity. However, the relationships between specific domains of disgust sensitivity and general religious fundamentalism or religious scrupulosity remains unknown and a lack of experimental data prevents the drawing of causal inferences about the potential effects of disgust on religiosity. Two studies are reported that examined the relationship between specific types of disgust sensitivity (i.e., pathogen, sexual, and moral disgust) and specific religious beliefs (i.e., fear of sin and fear of God). In the first study it was found that sexual disgust and pathogen disgust were significantly correlated with fear of sin and fear of God, respectively. In the second study the experimental induction of disgust led to greater fear of sin but not to the fear of God. These findings suggest that pathogen and sexual disgust sensitivities may serve as effective mechanisms for inflated scrupulosity. Taken together the outcomes from both studies converge on a greater understanding of the ‘Human Behavioral Immune System’ model that can account for social behavior with the evolution of adaptive benefit and perhaps more importantly highlights the possible drivers of specific religious behavior.

“Hydroxychloroquine and the Political Polarization of Science” by Cailin O’Connor & James Owen Weatherall [Boston Review]

“Hydroxychloroquine and the Political Polarization of Science

How a drug became an object lesson in political tribalism.

CAILIN O’CONNOR, JAMES OWEN WEATHERALL

https://bostonreview.net/science-nature-politics/cailin-oconnor-james-owen-weatherall-hydroxychloroquine-and-political

(…)

In particular, people become misinformed because they tend to trust those they identify with, meaning they are more likely to listen to those who share their social and political identities. When public figures such as Donald Trump and Rush Limbaugh make claims about hydroxychloroquine, Republicans are more likely to be swayed, while Democrats are not. The two groups then start sharing different sorts of information about hydroxychloroquine, and stop trusting what they see from the other side.

People also like to conform with those in their social networks. It is often psychologically uncomfortable to disagree with our closest friends and family members. But different clusters or cliques can end up conforming to different claims. Some people fit in by rolling their eyes about hydroxychloroquine, while others fit in by praising Trump for supporting it.

These social factors can lead to belief factions: groups of people who share a number of polarized beliefs. As philosophers of science, we’ve used models to argue that when these factions form, there need not be any underlying logic to the beliefs that get lumped together. Beliefs about the safety of gun ownership, for example, can start to correlate with beliefs about whether there were weapons of mass destruction in Iraq. When this happens, beliefs can become signals of group membership—even for something as dangerous as an emerging pandemic. One person might show which tribe they belong to by sewing their own face mask. Another by throwing a barbeque, despite stay at home orders.

And yet another might signal group membership by posting a screed about hydroxychloroquine.  There is nothing about hydroxychloroquine in particular that makes it a natural talking point for Republicans. It could just as easily have been remdesivir, or one of a half dozen other potential miracle drugs, that was picked up by Fox News, and then by Trump. The process by which Trump settled on hydroxychloroquine was essentially random—and yet, once he began touting it, it became associated with political identity in just the way we have described. (That is not to say that Trump and his media defenders were not on the lookout for an easy out from a growing crisis. Political leaders around the world would love to see this all disappear, irrespective of ideology.)

(…)

This bias toward extremes means that once opposing camps have formed, there is a lot of fodder for each side to appeal to as evidence of bias. Furthermore, with COVID-19, it is often the case that the different groups only trust one of the extremes. Extremity bias can thus amplify polarization, especially in an already factionalized environment.

The end result is that even without misinformation, or with relatively little of it, we can end up misinformed. And misinformed decision makers—from patients, to physicians, to public health experts and politicians—will not be able to act judiciously. In the present crisis, this is a matter of life and death.”